Reversible brain inactivation induces discontinuous gas exchange in cockroaches.
نویسندگان
چکیده
Many insects at rest breathe discontinuously, alternating between brief bouts of gas exchange and extended periods of breath-holding. The association between discontinuous gas exchange cycles (DGCs) and inactivity has long been recognised, leading to speculation that DGCs lie at one end of a continuum of gas exchange patterns, from continuous to discontinuous, linked to metabolic rate (MR). However, the neural hypothesis posits that it is the downregulation of brain activity and a change in the neural control of gas exchange, rather than low MR per se, which is responsible for the emergence of DGCs during inactivity. To test this, Nauphoeta cinerea cockroaches had their brains inactivated by applying a Peltier-chilled cold probe to the head. Once brain temperature fell to 8°C, cockroaches switched from a continuous to a discontinuous breathing pattern. Re-warming the brain abolished the DGC and re-established a continuous breathing pattern. Chilling the brain did not significantly reduce the cockroaches' MR and there was no association between the gas exchange pattern displayed by the insect and its MR. This demonstrates that DGCs can arise due to a decrease in brain activity and a change in the underlying regulation of gas exchange, and are not necessarily a simple consequence of low respiratory demand.
منابع مشابه
Regulation of gas exchange and haemolymph pH in the cockroach Nauphoeta cinerea.
Ventilatory control of internal CO(2) plays an important role in regulating extracellular acid-base balance in terrestrial animals. While this phenomenon is well understood among vertebrates, the role that respiration plays in the acid-base balance of insects is in need of much further study. To measure changes in insect haemolymph pH, we implanted micro pH optodes into the haemocoel of cockroa...
متن کاملThe effect of reversible inactivation of the central amygdaloid nucleus on cardiovascular responses in rats with renal hypertension
The brain rennin-angiotensin system (RAS) has an important role in the regulation of cardiovascular function. The aim of the present study was to determine the effect of reversible inactivation of the central amygdaloid nucleus (Ace) in normotensive rats and rats with renal hypertension (2K-1C). Two groups of normotensive rats were selected for this study. In one group, hypertension was induced...
متن کاملThe effect of reversible inactivation of the central amygdaloid nucleus on cardiovascular responses in rats with renal hypertension
The brain rennin-angiotensin system (RAS) has an important role in the regulation of cardiovascular function. The aim of the present study was to determine the effect of reversible inactivation of the central amygdaloid nucleus (Ace) in normotensive rats and rats with renal hypertension (2K-1C). Two groups of normotensive rats were selected for this study. In one group, hypertension was induced...
متن کاملCockroaches breathe discontinuously to reduce respiratory water loss.
The reasons why many insects breathe discontinuously at rest are poorly understood and hotly debated. Three adaptive hypotheses attempt to explain the significance of these discontinuous gas exchange cycles (DGCs), whether it be to save water, to facilitate gas exchange in underground environments or to limit oxidative damage. Comparative studies favour the water saving hypothesis and mechanist...
متن کاملDiscontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae).
Insects are at high risk of desiccation because of their small size, high surface-area-to-volume ratio, and air-filled tracheal system that ramifies throughout their bodies to transport O(2) and CO(2) to and from respiring cells. Although the tracheal system offers a high-conductance pathway for the movement of respiratory gases, it has the unintended consequence of allowing respiratory transpi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 11 شماره
صفحات -
تاریخ انتشار 2013